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Abstract

Mathematical formulations of heat conduction in thin films and subsequent analytical solutions are the subject of this
paper. A generalized formulation of the energy equation that allows for local nonequilibrium conditions between the
heat carriers is valid for a broad spectrum of materials from conductors to nonconductors. A unified solution is derived
from the classical solution of the energy equation and it is cast as a modification of the Green’s function solution for
Fourier heat conduction. Numerical examples show the influence of periodic surface heat flux on phase angle and
temperature, and the condition for lumped system approximation. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature
C CAHC[Im3K™
Cc cJC

C,, C, heat capacities [J m ™ K 7]
G electron—phonon coupling
G GLYK
GM(*) microscale Green’s function
K thermal conductivity [W m~' K 7]
L film thickness [m]
m, n indices
¢ heat flux [W m~?
go heat flux [W m™?
r position vector
S volumetric heat source [W m™?
S see equation (16c¢)
Sp speed number, oL /o
T temperature [K]
time [s]
- period of oscillation [s]
» pulse period [s]
coordinate [m].

N~~~

Greek symbols

o thermal diffusivity [m?s™']

. parameter related to y,, equation (16a)
y, eigenvalue

A, parameter related to y,, equation (16b)
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TR
v 2mx frequency [rad s™']

¢ distance parameter, in equation (22)

o thermal wave speed [m s™']

7 dummy variable and Green’s function parameter
7, lagtime, energy equation [s]

Tp electron relaxation time [s]

7, lag time, heat flux [s]

7, lag time, temperature [s].

Subscripts

a, b, ¢ conjugates of GM ()
e electron

1 Ilattice.

1. Introduction

Short-pulse energy deposition on thin films is used in
micromachining, laser processing of diamond films, laser
surface hardening, and other applications. Short-pulse
lasers are also used in laboratories for evaluating the
properties of thin films. Classical methods of predicting
temperature lose validity for objects with length the order
of a micron (or less) and for time the order of picoseconds
(orless), when different models known as microscale heat
transfer become necessary. For microscale heat transfer,
the individual heat carriers, e.g., phonons, electrons, and
photons, may dramatically affect the observed tem-
perature behavior. In metals, both free electrons and
phonons transfer heat energy while, in semiconductors,
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the phonons are the major heat carriers. The individual
heat carriers travel an average distance, or mean free
path, in a material before transmitting their energy to
other heat carriers by collisions. The scattering of energy
carriers by phonons, impurities, and various imper-
fections determines the state of energy transport [1].

There are different theories that predict the thermal
behavior of thin metals and nonmetals. It is understood
that electromagnetic radiation, ranging from ultraviolet
to infrared, excites electrons in metals followed by elec-
tron—phonon interaction [2]. Photons excite electrons
into higher energy levels. The excited electrons rapidly
become thermalized producing a hot free electron gas.
The electron gas diffuses through the metal lattice, gener-
ating phonons by colliding with the lattice (electron—
phonon collisions); the mean collision time is small, of
the order of 20 femtoseconds. The exchange of energy
between electrons and phonons requires many collisions;
therefore, the electron thermal relaxation time is in pico-
seconds. Qui and Tien [2, 3] used a two-step radiation-
heating model to study absorption of photon energy by
electrons and subsequent heating of the lattice through
electron—phonon coupling.

The Boltzmann transport theorem is usually modified
to obtain linear systems [3] to study various energy trans-
port phenomena in microscale devices. The hyperbolic
two-step  radiation-heating model approximately
describes the variation of temperature fields in thin metals
due to electron gas flow and electron-lattice coupling.
This model can be reduced to the parabolic two-step
model.

The objective of this paper is to provide a complete
solution of the microscale energy equation without lim-
iting this solution to a specific material. This paper also
includes a discussion of the derivation of the microscale
energy equation without using quantum mechanics. This
equation employs a lagging behavior similar to that
reported in ref. [4] and agrees with the hyperbolic two-
step model for metals [3]. It is remarkable that the exact
solution of this equation can be constructed using the
widely available Green’s function solutions. The analysis
leads to an interesting criterion that signifies the occur-
rence of a thermal wave. Two numerical examples are
selected to validate the solution technique and to show
the effect of various dimensionless variable groups on
temperature for a range of sinusoidal heat input frequenc-
ies. A knowledge of the temperature response to a range
of heat input frequencies is useful when studying the
influence of a multifrequency energy source, e.g., a laser
pulse, on temperature.

2. Analysis

The mathematical derivation of the energy equation
presented is based on the hypothesis that energy input is

absorbed by electrons and lattice in a substance. If a
material has free electrons, the electrons can be con-
sidered separately and, at a given time, ¢, the electron gas
temperature, 7,(¢), is different from the lattice tempera-
ture, 7,(7); however, they are related [2, 3] by equation,

0T, (1)

G5, = GIT.(0)—Ti(0)] (M
that can be written as
C 0Ty (1)

T.) =T+ —
(0 =T+ o
Equation (2) states that the temperatures of electron gas
and lattice are related and this relation is described using
the first two terms of the Taylor series.

(@)

2.1. Derivation of energy equation

Energy balance applied to an elemental volume at
location r and at time ¢ must include the contributions of
the energy storage of the electron gas and the lattice, that
is,

0T, (r, 1) 0T \(r, 1)

ot Yoo
All subsequent formulations of the energy equation are
based on equation (3a). Tzou [4] presented an equation
similar to equation (3a) without including the electron
energy storage. The parameters C, and C; are the volu-
metric heat capacities of electron gas and lattice, re-
spectively. In the remaining steps of these derivations,
the thermophysical properties are regarded as constant.
Substitution of T, from equation (2) into equation (3a)
yields

—Vqr, ) +Sx 1) =C, (3a)

oT\(r,t) C.C, *Ty(r,1)
ot G (')[2

—Vq@,)+Sr ) =C

oT, O’ Ti(r, 1)
—-—+Cr,—————
ot or*

where C = C.+C, and 7, = C.C,/GC. The variable 7, is

the thermalization time in [3] and the lag time in [5].
Under the local equilibrium condition, the Fourier

equation relates the heat flux, q, to temperature according

to equation,

q(r’ t) = _KVT(r> t)' (4)

At time ¢, the system is not at the state of equilibrium.

Before the onset of equilibrium, Tzou [4] used a dual lag
time concept and rewrote equation (4) as

q(r’l+rq) = —KV’TI(I',I-F‘L',) (5)

where 7, and 7, are two independent lag times in equation

(5). Expanding equation (5) in the Taylor series and

retaining the first two terms of the series yields [4],
dq(r.1)

0
Q.0+, = —KVEr)—Ke, 3 VIi(eD) - (6a)

=C (3b)
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Alternatively, combining the microscopic heat flux equa-
tion [3], developed for metals, with equation (2), leads to
the following relation,

oq(r, 1)
or

Q(l', I)+TI" 7KVT5(1', t)
co
G ot

Equation (6a) reduces to equation (6b) if 1, = 7 and
T, = C/G.

Next, the focus is on the derivation of the energy equa-
tion. In subsequent formulations, 7 stands for 7). Differ-
entiating equation (3b) with respect to ¢ and allowing the
operator (V) to differentiate equation (6a) results in the
following set of equations.

= —KVT(r,1)—K——VT,(xr,1). (6b)

_0[V-q(r,0]  0S(r,1) _ Cé’ZT(r, f) e 0*T(r, 1)
ot ot o o
7
oq(r, t
Vq@0+@V[qg)J

= -V [KVT(r,t)]—1,V" [%KVT(L t):|. ®)

By changing the order of differentiation, one can equate
the terms

AV-qr.0] _ o [5q(r, I)}

ot ot

in equations (7) and (8) and after substituting for
V-q(r, 1) from equation (3b), the result is,
o{V+[KVT(r, )]}

V- [KVT(r,0)]+7, o

-f[sxnt>+fqas?’”}
ot

oT(x,t O*T((r, ¢
=MD L e, gy TR0
at or
*T
+C‘L'(,1:qil). 9)
or?

The formulations leading to equation (9) are based on
physical reasoning and mathematical deductions. Qui
and Tien [3], using quantum mechanics, developed a
hyperbolic two-step model for metals that can also pro-
duce equation (9). A comparison with the derivations in
[3] shows that parameter t,, for metals, is the same as 1,
known as the electron relaxation time at the Fermi
surface. To estimate parameters 7, = C}/G, 7, = C.C,/CG,
and 7, the typical values of C., C,, G, and 1, for selected
metals are presented in Table 1. Based on data in Table
1, the parameters t,, 7,, 7, are quite small.

Below it is shown that the third partial derivative of
temperature with respect to time in equation (9) is neg-

ligibly small when multiplied by 7, and t,. The right-
hand-side of equation (9) can be written as

oT(r, ¢ 0*T(r, t
C E )—O—C(Tg-i-rq)#)
ot ot
’T(r, 1) 0 0T(r, 1)
T,————=C— | T(r, .+,
+Cr,1, e C6l|: D+ (. +1,) o
0> T(r, ¢
+ugié;q. (10)
dt

Now, the term in square brackets is compared with the
Taylor series expansion T'[t+4 (1, +1,)],

Tt+(t,+71,) = T(r,0),1)

oT(r, 1)
+(t.+1,) o

(Te-i—fq)2 0*T(r, 1)
2 o
This suggests, when (r,+71,) is small, the following
inequality holds,
oT(r, 1)
ot

(o417, T 1)
2 or

«(1,+71,)

indicating that the higher order term is negligible. Since
7, and 7, are real, then 7,7, <(1,+7,)%2, and the term
containing ¢°T/dr, equation (9), should be discarded.
The final form of the microscale thermal conduction
equation is

VKV T, )+ 7, S VI DT

ot
oS(r, 1)
+ [S(r, 1+1, o
_0T(r, 1) 0*T(r, 1)
= Ci{')t -l—C(t(,—i-rq)iat2 . (11)

Equation (11) is a more tractable version of equation (9)
with no loss of generality; no reference is made to the
number of spatial dimensions or to the type of materials
studied. Using appropriate values of ‘lag’ times, 7,, 7., 7,,
and other thermophysical properties, equation (11) holds
for dielectric materials, conductors, or semiconductors.
The analytical solution of this equation is new and it is
useful for finding the temperature field for a broad range
of microscale applications.

2.2. Solution
The analytical solution of this equation is an essential

part of this presentation. The derivation begins by pro-
posing a series solution for finite bodies of the form

7.0 = ¥ hOF 0 (12

where F,(r) satisfies equation
V- [KVFn(r)] = _VI'ICE1(r) (13)
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Table 1

The electron—phonon coupling factors [2] heat capacity [6] and thermal conductivity [7]

G c. G K o
Metal [TWm? K™ MIm—3 K™ MIm—3K™ [Wm~'K™ [ps]
Au 28000 0.021 2.5 317 0.04
Ag 28 000 0.019 2.5 429 0.04
Cu 48000 0.029 34 401 0.03
Cr 420000 0.058 3.2 93.7 0.003
W 260000 0.041 2.5 174 0.01
Pb 120000 0.049 1.5 35.3 0.005

and homogeneous boundary conditions. Substitution of
T from equation (12) in equation (11), multiplying both
sides of the resulting equation by F,(r), and using the
orthogonality condition,

0 whenn#m

J F,(nF,(x)dV = { (14)

N, whenn=m
yields, in an ordinary differential equation, the relation

&>, (1) dy, (1)
aw g

+22,() = SX0). (15)

The symbols f,, 4,, and Si(¢) are short-hand notations
defined by the relations,

P | 1 = 1 (16a)
n = Vn . - a
T 2 T 2 )

T 1/2
;“n =" |:1 - : j|
T, + 7.

el oS(r, 1)
N,C(r,+7.) J R <S(" D >d :

(16b)

S0 =

(16¢)
It is remarkable that, except for coefficients 8, and 4,,
this solution of equation (15) is identical to that presented
by Haji-Sheikh and Beck [8] for the thermal wave equa-
tion. Modifications are needed to account for the con-
tribution of the terms in square brackets, equation (16a),
and for the term 7,/(7,+1,) in equation (16b). The solu-
tion [8] of equation (15) leads to the value of the function

Y as
W, (1) = e’ {D,, sinh[/ (B7 —2)1]
+ D, cosh[/ (87 — A1}
. J 9 sinhly/(B; —22) (1=")]
=0 (Ba—7)
The arguments of hyperbolic sine and cosines are real if
2 )2 > 0; otherwise, they are imaginary; however, the

S¥t)de.  (17)

quantity ¥,() is always real. The constants of integration
are D, and D,, that must be determined using the initial
temperature 7;(r) = T(r,0) and T;(r) = 0T(r,7)/0tas t —
0. The substitution of ¥,(¢) from equation (17) in equa-
tion (12) provides the complete solution for the homo-
geneous boundary conditions. The contribution of the
initial condition is

o L(r)ef(vr/*u)’ {sinh[ B — 1]

Ti(r,) =)
=1 N, B2
x [m—m J F,0T0)dV + J Fn(r)Tﬁ(r)dV’}

+cosh[\/(Bz — A2)1] J F,(r)T;(r) dV’}

and the contribution of the volumetric heat source is

Ts(l', Z) — il \[’ J <%>e’7n(’*f)

(ﬁf*ﬂ»ﬁ)(tfr)]}
(Br—22)

(18a)

e/~ sinh][
x

(t,+7.)

oS(r/,
X <S(r’, )41, (o:r 2

)dV’ dr. (18b)
Then, the general solution for homogeneous boundary
conditions is

T@,t) =T\(r,t)+ Ts(r, 1). (18¢)

The detailed procedure that includes the contribution of
nonhomogeneous boundary conditions is in [8]. Also,
this reference contains a method of calculating the
Green’s function from equation (18b) that is employed
in the subsequent analysis.

If S@’,t) in equation (18b) is replaced by
Co(t—1*)o(r'—r*) and after some algebraic steps
described in [8], the result is the Green’s function

GM(r,t|v, 1) = Gi(r, t|1',7)
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G| Y. ) —GM @Y. D)) (19)

T.+71,

where

o0 F F 2
GV, 1|r, ) =Y (M)e—n,(xﬂ)

n=1 ]\7,7

£,(= sinh 2_)'2 —
y {e sinh[{/ (8, —2:)( T)]} (19b)
(T + 1IN/ (B —43)

and

o0 F F ’
G;,M(l‘,t|r’7T) — Z <w>e—yn(l—r)

n=1 n

x {efhtr=o cosh[\/M(l* ol (19%)

Gl‘."(r, t | l‘/, T) — i <w>e—yn(l—r)

n=1

e/ sinh[/(By —A) (1= )]
=4
For dielectric materials, G — oo then t1,=0 and
7,(y,—P,) = 1/2 and equation (19a) reduces to

X {(V/l_ﬁn) } (19d)

GM(r, t|r,1) =(1/2)GM(r, t| ¥, 1)+ GY(xr, t |1, 1)

wherein GM(*), (1/2)GM(*), and G})'(*) correspond to
G,(*), G,.(*) and G,,(*) defined in ref. [8]. The complete
Green’s function solution form of equation (18a), descri-
bing the effects of initial conditions, is

ﬂm0=JGYmMﬂﬂﬂWNV
V

+(rq+rl,)f Gy (r 1|7, DT, () dV’

vV

+J GY (e, t|v,0)T,(x)dV’ (20a)
v

and equation (18b) for the volumetric heat source effect
is

R@0=%J

t

1=

er GM(r,t|r,1)
0 v

aS(r, 1)
0t

X (S(r’, )+1, >d V', (20b)
Equation (20b) is the basic solution for most laser heating
problems in microscale applications. Accordingly, the
temperature solutions for many microscale systems are
readily available by minor modification of the Green’s
functions and Green’s function solutions for Fourier heat
conduction. In the following numerical examples, this
solution method is tested through computation of the
temperature response due to a sinusoidal heat input. This
type of response is of interest in signal processing. The
contribution of the nonhomogeneous boundary con-
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ditions can be included using a linear transformation of
temperature as described in [8].

3. Numerical examples
3.1. Example 1. Thermal wave model

The following analysis applies to a thin film of a dielec-
tric material modeled as a plate, Fig. 1, whose surfaces at
x = 0 and x = L are insulated, and the material domain
is initially at zero temperature. For dielectric materials,
7, = 0, subsequently 7, = 0, and t, = o/6” where o is ther-
mal diffusivity and ¢ is the speed of the thermal wave [9,
10].

3.2. Solution

A solution for a similar problem with a narrower range
of frequency parameters is in [11]. For homogeneous
boundary conditions and zero initial condition, equation
(18b) reduces to the temperature solution,

o t L
T(x, 1) :%J er GM(x,t|x', 1)
0

0

=

0S(x’
X [S(x’, )+ = M} dx” (21a)
g Ot

The Green’s function for this example is

£ 2-9 mnx
M /N om mmnx
G (x,t|x,1)—2ngo 7 cos< I )

< cos (mnx’) TS sin[g?2,,(t—1)/24]
Z""

where Z,, = /4m*n*/Sp>—1 and Sp=olL/a is the

dimensionless speed number. For this specific example,
it is assumed the heat source is at x = 0 and it is described
by the relation S(x, ) = (x—0)g(¢) wherein the Dirac
Delta function, d(x—0) =0 when x # 0. After sub-
stituting for S(x’, t) and G (x, | X', t) in equation (21b)
and following integration of the term containing

(21b)

g=qosin(v?)
—
— oT =0
— ox
—
—
—
-
x=0
— X
—_—

Fig. 1. Schematic of a thin plate and boundary conditions.
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0S(x’,t)/0t by parts while assuming ¢(0) = 0, equation
(21a) reduces to

o
T=—" —(rgj2a _
Ka q(t—¢Jo)
o =2 22— 50’” mmnx
e (L)
t i 27
« J efal([—r)‘ﬁlz wq(’[) dt

o

m

1
Z 2— 60’” mnx e—oz(r—r),"sz
m 0 L =0

x {cos[o?Z,,(t —1)/20] —cos[mna(t—1)/L]} q(7) dT
(22)

where d,,, 1s the Kronecker delta, d,,, = 1 if m = 0, other-
wise d,,, = 0. The first term on the right side of equation
(22) describes the propagating thermal wave and contains
a parameter, &, the distance that the wave travels, includ-
ing boundary reflections. For thermal waves, reflections
must be considered although the wave attenuates very
quickly. The term containing ¢ is obtained by integrating
over the term with dS(x’,7)/0t in equation (20b). The
unique feature of this solution is that the convergence of
the last term in equation (22) is greatly enhanced because
the term in square brackets goes to zero as m — co.

The following parametric studies show the influence of
a periodic surface heat flux on the amplitude and phase
delay of the resulting temperature variation. For this
initial parametric study, assume the surface heat flux is
given as
q(t) = o sin(vi) (23)
where v is the angular frequency equal to 2n x frequency
and ¢ is the heat flux with g, its amplitude. The dimen-
sionless temperatures on both surfaces of the thin film
are computed using equation (22). For comparison, the
temperature is also calculated using the solution of the
microscale conduction equation, e.g., equation (20b), see
equation (Al) in appendix. An examination of the
numerical results obtained from equation (22) and veri-
fied using equation (A1) shows that the former provides a
better insight into the wave phenomena and has superior
convergence characteristics. Figures 2-5 show the com-
puted phase angle and dimensionless frequency using
equation (22).

3.3. Results

To elucidate this presentation, an abstract thin film is
chosen so that the value of the speed number, Sp = oL/,
is equal to five. Figure 2 is plotted for a dimensionless
vL?/o. equal to 10. The temperature amplitude at x = L,
for the thermal wave, equation (22), is the solid line
in Fig. 2(b). It is slightly higher than the amplitude of

vL%a.= 10, 6L/o =5

0.5 prr—rrrrrrrrrrrrrT T

wlaaaa daaaa laaaaly

o
-
LI B e e

<}
w

o
o
©
L B B B B I B L L I

Fig. 2. Heat flux input at x = 0 and temperature for thermal
wave and Fourier conduction models when vL?/a = 10 and
oLj/o=5; (a) at x =0and (b) at x = L.

"57\
VLZ/(X.=40, ol/a=5 $
0.3 T e T T
L A ; = 110
.2 ]
02} 55 ]
- £ Jos
o1} oS 1 .
3 o
— :OOE
\q/qo—j 05
i Therma1:
wave - -1.0
PR 1
——+
Thermal 10
wave ]
& Jos
52 1
58 Joo &
=0 o
. J-os
[ UAURR A E A I
Yo | LI U U TP RN R TP RPN B O P B
0.0 0.2 0.4 0.6 0.8 1.0
at/L?

Fig. 3. Heat flux input at x = 0 and temperature for thermal
wave and Fourier conduction models when vL?/a = 40 and
gL/o=5; (a) =0and (b) at x = L.

temperature values, dash line, for the Fourier conduction
and there is only a moderate change in the phase shift.
In Fig. 2(a), at x = 0, the graph shows that there is very
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vL*/a= 60, cL/o.= 5

Ll r T T T T 1 M
Thermal 1.0
=
.2
= O
23 17 0.5
==}
23 °
: 400 5
— b o
L]
i} 9405
<1-1.0
L L
™1
§ 11.0
52 1
0.03 | £2 Jos
»—lo 0.02 =o ] °
=2'A B 3
2 v joo g
M 0.01 ]
[ 4-05
000 f —4r—+
F Thermal wave 110
_001 1 1 1 1 1 1 1 1 1 1 1 1 3

00 01 02 03 04 05 06
at/L?

Fig. 4. Heat flux input at x = 0 and temperature for thermal
wave and Fourier conduction models when vL?/a = 60 and
oL/ =5; (a)atx =0and (b) at x = L.

T
2.0 [ |— Equation (22) /
1.8 - ¢/21 = 0.25+(vL*/0)/Sp) S
16F Sp=ol/ia=4 /" <
1.4_— // <]
33 - 2 -
Q 1,2_ V% 10
< 10} -
08 | 1520 oo
06 ]
4+ .
0 @) 1
02k b
| >jgaananaananasnanas nanss sEss
~_ 10 — Equation (22) 3
j_o X |--- Asymptotic Line, I/(vCLY/K)| 3
= fF E
) 3 _ E
%10 E clia=4 5 6783
2 s £l L E
2F —3
210'25
= F
= 10
3F
< H 2 ®) 152000
10.3||||I||||I|1||Ix|||I|||»I|||
0 10 20 30 40 50 60

Dimensionless Frequency, vCLYK

Fig. 5. Summary of (a) phase angle, (b) amplitude at x = L
different values of the Sp = gL/o.

little difference in the surface temperature using these two
models.

Equation (22) shows that an increase in the frequency
reduces the temperature amplitude at x = L; however, it

will approach an asymptotic value. In contrast, in the
Fourier conduction solution, the amplitude continuously
reduces. These observations are graphically demon-
strated, for vL*/au =40 and 60, in Figs 3 and 4, re-
spectively. As vL?*/o increases from 10 to 40, Fig. 3(b),
the amplitude of temperature at x = L, for the thermal
wave model, is reduced by a factor of ~4 and for the
Fourier conduction model is reduced by a factor of nearly
13. Also, there is a significant increase in the phase shift
for the thermal wave model at x = L. Figure 3(a) shows
the temperature data at the x = 0 surface. As vL?/x fur-
ther increases, Fig. 4(b), clearly shows the effect of the
thermal wave. There is only a moderate reduction of the
temperature amplitude at x = L for the thermal wave
model while the phase delay spans over two periods. The
data in Figs 3(b) and 4(b) show that there is an offset in
the value of the mean temperature. For example, for the
Fourier conduction and as ¢ — oo, the value of this offset
for dimensionless temperature, K7/q,L, is equal to
1/(vL*a).

To summarize the data, the value of the phase angle is
plotted in Fig. 5(a) as a function of vL*/« for different
values of the speed number, Sp = gL /a. The ordinate in
Fig. 5(a) is ¢p/2m where ¢ is the phase angle. The ordinate
is also equal to the ratio of the time delay of the signal to
the period of the signal, At/t, = ¢/2x. In this figure, the
ogL/o = oo line represents the phase angle for the Fourier
conduction model. The phase angle, ¢, at the x =L
surface, for the thermal wave model is significantly larger
than that for the Fourier heat conduction when Sp = 5,
Fig. 5(a). This difference gradually diminishes as Sp
increases to above 10. For Sp of below five, the thermal
wave dominates and the first term on the right-hand-
side of equation (22) plus an offset of ~0.25 adequately
predicts the phase angle, ¢ ~ 0.25+vx/o, see the dash
lines in Fig. 5(a). The line for Sp =4 shows a wavy
behavior. This is unrelated to the series convergence since
the ‘x’ symbols are computed symbolically using 100
terms and the solid lines are generated by Fortran using
equation (22) and retaining as many as 40000 terms.
With no significant observed difference in the two cal-
culated values, the wavy behavior is not due to numerical
error. The corresponding amplitudes at the x = L surface
are plotted in Fig. 5(b). All amplitudes in Fig. 5(b)
asymptotically approach 1/(vL*/o) when vL?/a is less than
one, see the dash line in Fig. 5(b). However, at large
values of vL?/o (not shown in the figure), the amplitude is
higher for small Sp values and approaches the asymptotic
value of exp(—Sp/2)/Sp.

3.4. Example 2. Parametric studies of parabolic two-step
model

The response of a thin metallic film to a periodic sur-
face heat flux is considered. The computation of ampli-
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tude and phase angle of a periodic surface heat flux is the
subject of this example.

3.5. Solution

The response of a thin gold film to irradiation by a
Gaussian-shaped light pulse has been examined ana-
lytically in [12] for the parabolic two-step model. The
parabolic two-step model follows from the more general
hyperbolic two-step equation by the elimination of
T, = T, assuming that it is small and it can be neglected.
In the presence of a heat source, the generalized for-
mulation for homogeneous boundary conditions and
zero initial conditions, equation (18b), leads to a tem-
perature solution for the parabolic two-step radiation
heating model

mnx\ ('
X CcoS [ —— ef(ymfﬁm)(lft)
L =0

sinh[{/ S — (1= C//C)(t—1)]
X dr
= Im(1=C/C))

x JL cos (?) S(x, 1) dx (24)

0

where y,, =(mn/L)’K/C and B,, = y,.[1—C/(2QC)]—
GC/(2C.C)). Recall that the electrons initially absorb the
energy, move through the lattice and transfer their energy
to the lattice. Furthermore, equation (A1) in the appen-
dix yields the integrated form of equation (24) after
appropriate substitutions for t,, 7,, and letting 7, — 0.

3.6. Results

Calculations of the phase angle presented here are for
a typical range of significant parameter values. Of the
significant parameters, only the ratio of electron and total
heat capacities is solely determined by the material under
consideration. The total heat capacity and the electron
heat capacities are calculated by the method described
in [6]. Care is taken that the C = C./C values in the
calculations are typical for most metals. The values of C,
for data in Table 1, vary from 0.0075 for silver to 0.032
for lead. When necessary, the infinite series, in equation
(24) is truncated at M = 5000, where M is the number of
terms in the series. Generally, M = 500 terms resulted in
four accurate significant figures.

The significant parameters that determine the phase
response of the film to sinusoidal heat input are the
dimensionless  electron-phonon  coupling  factor,
G = GL?/K, the ratio of electron to total heat capacities,

C=C,/C, and the Fourier dimensionless frequency,
vCL*/K. However, other relevant dimensionless fre-
quencies emerge for the two-step effect depending on the
value of G.

The phase angle results for G between 10 and 500,
shown in Fig. 6(a), follow a general trend. For a range
of dimensionless frequency values, the phase angle, at
low values, is on the Fourier reference curve but smaller
at larger values of frequency. When G is very large, the
phase angle for the two-step model has nearly the same
value as the Fourier conduction model and it is nearly
independent of C. As G decreases, the phase angle further
departs from the expected Fourier phase angle and the
dependence of the phase angle on C becomes detectable.
Figure 6(b) shows the dimensionless amplitude at x = L
caused by the periodic surface heat flux. The amplitude
is nearly the same as that for the Fourier conduction
model and the logarithmic scale is for clarity of pres-
entation. The results for G of about five or less are plotted
in Figs 7(a—b). The phase angle, ¢, in Fig. 7(a), shows a
stronger dependence on C and the dimensionless tem-
perature amplitude, Fig. 7(b), assumes higher values than
those of the Fourier conduction model. Note that, in Fig.
7(a), the phase angle can be less for G = 5 than for G = 1.
This behavior occurs when electrons transport a larger
portion of energy across the layer in comparison to
molecular communications due to the Fourier conduc-
tion. Indeed, a linear variation suggested modification of
dimensionless frequency in Figs 6 and 7 when G is small.

An examination of equation (24) shows that, in
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0.9 F |---- C./C=0.01 b
0.8 |- - C,/C=0.05 500 =
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0.55- ___________________ 20 ':
04 F L2 A =0
I A 3
03F @  Gram-1p ]
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10_3....|H..|,.“|.\....
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Fig. 6. The variation of (a) the phase angle, ¢, and (b) the
dimensionless amplitude with dimensionless frequency, vCL?/K,
for GL*/K between 10 and 500 and C between 0.005 and 0.05.
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Fig. 7. The variation of (a) the phase angle, ¢, and (b) the
dimensionless amplitude with dimensionless frequency, vCL?*/K,
for GL*/K between one and ten and C between 0.005 and 0.05.

addition to coordinates and time, the temperature and
phase angle depend on G, C, and vCL*/K. It is of practical
interest to study the range of variables when the number
of these parameters is reduced. As an example, when
G is very small, Elsayed-Ali et al. [13] suggests setting
V:.q=0. After deleting V-q in equation (3a) and
eliminating T, using equation (2), the resulting differ-
ential equation has a form similar to equation (15), that
is,

d’T dT,
+ =1.8/C (252)
d(l‘/‘[[’)2 d(t/Te)
whose solution is
T=" U S(x)dr—e J S dr} (25b)
cl ), 0

where the dummy variable of integration, 7, is dimen-
sionless. When S = g,sin(v¢), the computation of the
phase angle, using equation (25b), leads to sin(¢) = (vz,)/
[14(v1})?] and cos(¢p) = — (vt,)*/[1+ (vt,)?]. The solid
line in Fig. 8 shows the variation of the phase angle,
¢ = tan"'(—1/vt,), as a function of vt, = vC.C}/(CG).
The discrete data in the figure are computed using equa-
tion (24). For G = 0.05, the deviations from the solid line,
atvt, = 5, is only 1.3%, whereas, for vt, = 5 increases to
5.3%, and the error is much lower for smaller G values.
This good agreement indicates that, for G < 0.05, there
are negligible thermal gradients in the lattice and the
electron gas. In general, when vt, = 27 or less, the period
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Fig. 8. The region of GL*/K < 0.05 when the energy transport
across a thin metal plate is by electrons.

is of the order of electron relaxation time and the solid
line in Fig. 8 is a good approximation. This regime, where
the thermal conduction is negligible, is analogous to a
lumped system in Newtonian heating where #/7, is related
to G Fo =(GL*K)(Kt/C.L* that plays the role of Biot
number x Fourier number. When G > 0.05, Fig. 8, the
deviation from the solid line increases; however, the
results remain insensitive to C. To demonstrate the con-
tribution of G, Fig. 9 is prepared by extracting G from
the dimensionless frequency used in Fig. 8. Figure 9
shows that the phase angle, for values of 0.05 < G < 5,
depends on vC.C,L*/(KC) and G but remains independent
of Cuntil G = 5 and C = 0.05. The phase angle response
for this dimensionless frequency is further explored in
ref. [14].

4. Conclusion and remarks

Thin films and short heat flux times offer special chal-
lenges for modeling thermal behavior. Below some
maximum length and time interval, the Fourier heat con-
duction no longer serves as an accurate description of
temperature and heat flow fields. It is remarkable that
there is a unified solution for metallic, nonmetallic, and
various other substances. This type of solution is math-
ematically simple to obtain because it uses Fourier con-
duction eigenfunctions and many of these eigenfunctions
are available in the literature [15]. Except for the term in
the curly brackets, equation (19a) or (19b) is the Green’s
function that is valid for homogeneous materials. The
two cases studied show a difference in the nature of phase
angles, the thermal wave model shows higher phase
angles while the two-step model shows lower phase angles
than the Fourier conduction model. A thermal wave may
exist in dielectric material. However, in the case of the
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Fig. 9. The variation of the phase angle, ¢, with dimensionless
frequency, vC.C,.L*/(KC), for GL?/K between 0.1 and 5 and C
between 0.001 and 0.05.

parabolic two-step model, since C, > C, and 7, = 0, the
argument of the hyperbolic sine in equation (24) is posi-
tive; hence, there is no thermal wave in a metallic film.

As discussed earlier, the phase delay in a dielectric
material depends on vCL*/K and Sp. When Sp < 20,
there will be a detectable increase in phase shift due to
the finite thermal wave speed and, when Sp < 10, this
contribution is significantly larger. In principle, the phase
angle can be detected in nonmetallic substances of small
thickness with relatively small values g L/o.

The phase angle results of the numerical simulation,
Figs 6-9, indicate the interesting mechanisms of heat
conduction. For Fourier heat conduction, the lattice and
electron temperature remain in local equilibrium. Fourier
heat conduction would be expected as G (or G)
approaches infinity. For large values of G, Fig. 6, the
phase angle response is essentially Fourier and inde-
pendent of C and G. As G reduces to 10, the variable G
begins to greatly influence the phase angle, however, the
influence of € remains relatively small. The effect of C
becomes significant, Fig. 7, when G approaches one and
the effect of the Fourier conduction begins to diminish.
For G below 0.05, Fig. 8, the contribution of the Fourier
conduction diminishes and the phase angle depends on a
single parameter. In this regime, the heat transfer can be
considered wholly two-step with the transfer of energy
being from electrons to lattice in the non-equilibrium
state for all the frequencies investigated. Figure 9
describes a transition regime where the influence of the
thermal conduction is small but graphically detectable.

The phase angles apparently have a minimum limit at
0.25, or a 90° phase difference for the two-step parabolic,
Fourier, and thermal wave models. For the thermal wave
model and Fourier model, this minimum is seen only
at the lowest frequencies. The minimum phase angle is

approached at higher frequencies for some combinations
of G and C in the two-step model results.

Based on the results of numerical simulations, exper-
imental determination of G and C could be accomplished
using this model. Presently, single frequency modulation
of laser irradiance is difficult to accomplish; the multiple
frequency input is the most feasible. Metal films varying
in thickness could be tested and the phase angles com-
pared to results of the two-step model shown here. The
multiple frequency input could be analyzed for phase
information and compared with the phase information
of the resulting temperature variation.

4.1. Wave phenomenon in the solution

Depending on the values of 7, and t,, the temperature
described by equation (18c) can exhibit wave behavior.
For example, when 1, = 0 and 7, > 0, the arguments of
hyperbolic sine and cosine can become imaginary indi-
cating existence of a wave phenomenon; in contrast, there
is no wave if 7, = 0 and 7, > 0. The existence of a wave
phenomenon, 82 — /2 < 0, leads to a condition
<@>(vnr,) SRR S 6)

T, 4

The right-hand-side and the left-hand-side of inequality
(26) are plotted as a function of their common variable,
7,7, in Fig. 10. The right-hand-side of inequality (26)
describes a parabola shown in Fig. 10 while the left-hand-
side represents a family of lines passing through the origin
with a slope equal to u =(t,+1,)/7,. A line through the
origin with slope of 1 is tangent to the solid line in Fig.
10 indicating that there is no thermal wave when
u=(t,+1,)/1, < l;e.g., formetals, p =~ C,/C « 1.Incon-
trast, for dielectric materials, 7, » 0 and p — oo, and the
inequality (26) leads to t,y, > 1/4, a condition for occur-
rence of the thermal wave.
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Fig. 10. Graphical representation of thermal wave condition in
microscale heat conduction.
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Appendix

Examples 1 and 2 describe the behavior of dielectric
materials and pure metals when there is a periodic heat
input at one surface. The temperature solution of
equation (18b), retaining t,, 7,, and 7,, and defining the
parameters @, = V— P Ym =(mn/L)*K/C,  and
Wy, = (ﬁi: _)“31)”2 is
KT > (2—0q,,) cos(mmx/L)

w,(t,+1,

qoL =0
x {(A, +vt,A;) exp[—a,Kt/(CL*)]
+ @, +vr, ) sin(ve) + (T, +vr,I) cos(ve)}/
Vv +(am—wp) 2+2v (@ +o,)] (AT)
where
A, = v[2a,,, cosh(w, )+ (v’ +a, +w}) sinh(w,,1)]
(A2)
Ay = [0,(vV* —a},+w}) cosh(w,?)
— (v +ap,—wp) sinh(w,, )] (A3)
r,=T,=—0,0—ad+o?)
and I, =—-T,=—2va,w,. (A4)

The periodic terms in equation (A1) can be cast in the
form sin(v¢— ¢) where ¢ is the phase angle.
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