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Abstract

Mathematical formulations of heat conduction in thin _lms and subsequent analytical solutions are the subject of this
paper[ A generalized formulation of the energy equation that allows for local nonequilibrium conditions between the
heat carriers is valid for a broad spectrum of materials from conductors to nonconductors[ A uni_ed solution is derived
from the classical solution of the energy equation and it is cast as a modi_cation of the Green|s function solution for
Fourier heat conduction[ Numerical examples show the in~uence of periodic surface heat ~ux on phase angle and
temperature\ and the condition for lumped system approximation[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

C Ce¦Cl ðJ m−2 K−0Ł
CÞ Ce:C
Ce\ Cl heat capacities ðJ m−2 K−0Ł
G electronÐphonon coupling
GÞ GL1:K
GM"=# microscale Green|s function
K thermal conductivity ðW m−0 K−0Ł
L _lm thickness ðmŁ
m\ n indices
q heat ~ux ðW m−1Ł
q9 heat ~ux ðW m−1Ł
r position vector
S volumetric heat source ðW m−2Ł
S�n see equation "05c#
Sp speed number\ sL:a
T temperature ðKŁ
t time ðsŁ
to period of oscillation ðsŁ
tp pulse period ðsŁ
x coordinate ðmŁ[

Greek symbols
a thermal di}usivity ðm1 s−0Ł
bn parameter related to gn\ equation "05a#
gn eigenvalue
ln parameter related to gn\ equation "05b#

� Corresponding author[

m "tq¦te#:tt

n 1p×frequency ðrad s−0Ł
j distance parameter\ in equation "11#
s thermal wave speed ðm s−0Ł
t dummy variable and Green|s function parameter
te lag time\ energy equation ðsŁ
tF electron relaxation time ðsŁ
tq lag time\ heat ~ux ðsŁ
tt lag time\ temperature ðsŁ[

Subscripts
a\ b\ c conjugates of GM "=#
e electron
l lattice[

0[ Introduction

Short!pulse energy deposition on thin _lms is used in
micromachining\ laser processing of diamond _lms\ laser
surface hardening\ and other applications[ Short!pulse
lasers are also used in laboratories for evaluating the
properties of thin _lms[ Classical methods of predicting
temperature lose validity for objects with length the order
of a micron "or less# and for time the order of picoseconds
"or less#\ when di}erent models known as microscale heat
transfer become necessary[ For microscale heat transfer\
the individual heat carriers\ e[g[\ phonons\ electrons\ and
photons\ may dramatically a}ect the observed tem!
perature behavior[ In metals\ both free electrons and
phonons transfer heat energy while\ in semiconductors\
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the phonons are the major heat carriers[ The individual
heat carriers travel an average distance\ or mean free
path\ in a material before transmitting their energy to
other heat carriers by collisions[ The scattering of energy
carriers by phonons\ impurities\ and various imper!
fections determines the state of energy transport ð0Ł[

There are di}erent theories that predict the thermal
behavior of thin metals and nonmetals[ It is understood
that electromagnetic radiation\ ranging from ultraviolet
to infrared\ excites electrons in metals followed by elec!
tronÐphonon interaction ð1Ł[ Photons excite electrons
into higher energy levels[ The excited electrons rapidly
become thermalized producing a hot free electron gas[
The electron gas di}uses through the metal lattice\ gener!
ating phonons by colliding with the lattice "electronÐ
phonon collisions#^ the mean collision time is small\ of
the order of 19 femtoseconds[ The exchange of energy
between electrons and phonons requires many collisions^
therefore\ the electron thermal relaxation time is in pico!
seconds[ Qui and Tien ð1\ 2Ł used a two!step radiation!
heating model to study absorption of photon energy by
electrons and subsequent heating of the lattice through
electronÐphonon coupling[

The Boltzmann transport theorem is usually modi_ed
to obtain linear systems ð2Ł to study various energy trans!
port phenomena in microscale devices[ The hyperbolic
two!step radiation!heating model approximately
describes the variation of temperature _elds in thin metals
due to electron gas ~ow and electronÐlattice coupling[
This model can be reduced to the parabolic two!step
model[

The objective of this paper is to provide a complete
solution of the microscale energy equation without lim!
iting this solution to a speci_c material[ This paper also
includes a discussion of the derivation of the microscale
energy equation without using quantum mechanics[ This
equation employs a lagging behavior similar to that
reported in ref[ ð3Ł and agrees with the hyperbolic two!
step model for metals ð2Ł[ It is remarkable that the exact
solution of this equation can be constructed using the
widely available Green|s function solutions[ The analysis
leads to an interesting criterion that signi_es the occur!
rence of a thermal wave[ Two numerical examples are
selected to validate the solution technique and to show
the e}ect of various dimensionless variable groups on
temperature for a range of sinusoidal heat input frequenc!
ies[ A knowledge of the temperature response to a range
of heat input frequencies is useful when studying the
in~uence of a multifrequency energy source\ e[g[\ a laser
pulse\ on temperature[

1[ Analysis

The mathematical derivation of the energy equation
presented is based on the hypothesis that energy input is

absorbed by electrons and lattice in a substance[ If a
material has free electrons\ the electrons can be con!
sidered separately and\ at a given time\ t\ the electron gas
temperature\ Te"t#\ is di}erent from the lattice tempera!
ture\ Tl"t#^ however\ they are related ð1\ 2Ł by equation\

Cl

1Tl "t#
1t

� GðTe "t#−Tl "t#Ł "0#

that can be written as

Te "t# � Tl "t#¦
Cl

G
1Tl "t#

1t
[ "1#

Equation "1# states that the temperatures of electron gas
and lattice are related and this relation is described using
the _rst two terms of the Taylor series[

1[0[ Derivation of ener`y equation

Energy balance applied to an elemental volume at
location r and at time t must include the contributions of
the energy storage of the electron gas and the lattice\ that
is\

−9 = q"r\ t#¦S"r\ t# � Ce

1Te "r\ t#
1t

¦Cl

1Tl "r\ t#
1t

[ "2a#

All subsequent formulations of the energy equation are
based on equation "2a#[ Tzou ð3Ł presented an equation
similar to equation "2a# without including the electron
energy storage[ The parameters Ce and Cl are the volu!
metric heat capacities of electron gas and lattice\ re!
spectively[ In the remaining steps of these derivations\
the thermophysical properties are regarded as constant[
Substitution of Te from equation "1# into equation "2a#
yields

−9 = q"r\ t#¦S"r\ t# � C
1Tl "r\ t#

1t
¦

CeCl

G
11Tl "r\ t#

1t1

� C
1Tl

1t
¦Cte

11Tl "r\ t#

1t1
"2b#

where C � Ce¦Cl and te � CeCl:GC[ The variable te is
the thermalization time in ð2Ł and the lag time in ð4Ł[

Under the local equilibrium condition\ the Fourier
equation relates the heat ~ux\ q\ to temperature according
to equation\

q"r\ t# � −K9T"r\ t#[ "3#

At time t\ the system is not at the state of equilibrium[
Before the onset of equilibrium\ Tzou ð3Ł used a dual lag
time concept and rewrote equation "3# as

q"r\ t¦tq# � −K9Tl "r\ t¦tt# "4#

where tt and tq are two independent lag times in equation
"4#[ Expanding equation "4# in the Taylor series and
retaining the _rst two terms of the series yields ð3Ł\

q"r\ t#¦tq

1q"r\ t#
1t

� −K9Tl "r\ t#−Ktt

1

1t
9Tl "r\ t# "5a#
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Alternatively\ combining the microscopic heat ~ux equa!
tion ð2Ł\ developed for metals\ with equation "1#\ leads to
the following relation\

q"r\ t#¦tF

1q"r\ t#
1t

� −K9Te "r\ t#

� −K9Tl "r\ t#−K
Cl

G
1

1t
9Tl "r\ t#[ "5b#

Equation "5a# reduces to equation "5b# if tq � tF and
tt � Cl:G[

Next\ the focus is on the derivation of the energy equa!
tion[ In subsequent formulations\ T stands for Tl[ Di}er!
entiating equation "2b# with respect to t and allowing the
operator "9=# to di}erentiate equation "5a# results in the
following set of equations[

−
1ð9 = q"r\ t#Ł

1t
¦

1S"r\ t#
1t

� C
11T"r\ t#

1t1
¦Cte

12T"r\ t#

1t2

"6#

9 = q"r\ t#¦tq9 = $
1q"r\ t#

1t %
� −9 = ðK9T"r\ t#Ł−tt9 = $

1

1t
K9T"r\ t#% [ "7#

By changing the order of di}erentiation\ one can equate
the terms

1ð9 = q"r\ t#Ł
1t

� 9 = $
1q"r\ t#

1t %
in equations "6# and "7# and after substituting for
9 = q"r\ t# from equation "2b#\ the result is\

9 = ðK9T"r\ t#Ł¦tt

1"9 = ðK9T"r\ t#Ł#
1t

¦$S"r\ t#¦tq

1S"r\ t#
1t %

� C
1T"r\ t#

1t
¦C"te¦tq#

11T""r\ t#

1t1

¦Ctetq

12T"r\ t#

1t2
[ "8#

The formulations leading to equation "8# are based on
physical reasoning and mathematical deductions[ Qui
and Tien ð2Ł\ using quantum mechanics\ developed a
hyperbolic two!step model for metals that can also pro!
duce equation "8#[ A comparison with the derivations in
ð2Ł shows that parameter tq\ for metals\ is the same as tF\
known as the electron relaxation time at the Fermi
surface[ To estimate parameters tt � Cl:G\ te � CeCl:CG\
and tq\ the typical values of Ce\ Cl\ G\ and tF for selected
metals are presented in Table 0[ Based on data in Table
0\ the parameters tt\ te\ tq are quite small[

Below it is shown that the third partial derivative of
temperature with respect to time in equation "8# is neg!

ligibly small when multiplied by te and tq[ The right!
hand!side of equation "8# can be written as

C
1T"r\ t#

1t
¦C"te¦tq#

11T"r\ t#

1t1

¦Ctetq

12T"r\ t#

1t2
� C

1

1t $T"r\ t#¦"te¦tq#
1T"r\ t#

1t

¦tetq

11T"r\ t#

1t1 % [ "09#

Now\ the term in square brackets is compared with the
Taylor series expansion T ðt¦"te¦tq#Ł\

T ðt¦"te¦tq# 3 T"r\ t#\ t#

¦"te¦tq#
1T"r\ t#

1t
¦

"te¦tq#1

1
11T"r\ t#

1t1
[

This suggests\ when "te¦tq# is small\ the following
inequality holds\

"te¦tq#1

1
11T"r\ t#

1t1
ð"te¦tq#

1T"r\ t#
1t

indicating that the higher order term is negligible[ Since
tt and te are real\ then ttte ³"te¦tq#1:1\ and the term
containing 12T:1t2\ equation "8#\ should be discarded[
The _nal form of the microscale thermal conduction
equation is

9 = ðK9T"r\ t#Ł¦tt

1"9 = ðK9T"r\ t#Ł#
1t

¦$S"r\ t#¦tq

1S"r\ t#
1t

� C
1T"r\ t#

1t
¦C"te¦tq#

11T"r\ t#

1t1
[ "00#

Equation "00# is a more tractable version of equation "8#
with no loss of generality^ no reference is made to the
number of spatial dimensions or to the type of materials
studied[ Using appropriate values of {lag| times\ tt\ te\ tq\
and other thermophysical properties\ equation "00# holds
for dielectric materials\ conductors\ or semiconductors[
The analytical solution of this equation is new and it is
useful for _nding the temperature _eld for a broad range
of microscale applications[

1[1[ Solution

The analytical solution of this equation is an essential
part of this presentation[ The derivation begins by pro!
posing a series solution for _nite bodies of the form

T"r\ t# � s
�

n�0

cn"t#Fn"r# e−gnt "01#

where Fn"r# satis_es equation

9 = ðK9Fn"r#Ł � −gnCFn"r# "02#
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Table 0
The electronÐphonon coupling factors ð1Ł heat capacity ð5Ł and thermal conductivity ð6Ł

Metal
G Ce Cl K tF

ðTW m−2 K−0Ł ðMJ m−2 K−0Ł ðMJ m−2 K−0Ł ðW m−0 K−0Ł ðpsŁ

Au 17 999 9[910 1[4 206 9[93
Ag 17 999 9[908 1[4 318 9[93
Cu 37 999 9[918 2[3 390 9[92
Cr 319 999 9[947 2[1 82[6 9[992
W 159 999 9[930 1[4 063 9[90
Pb 019 999 9[938 0[4 24[2 9[994

and homogeneous boundary conditions[ Substitution of
T from equation "01# in equation "00#\ multiplying both
sides of the resulting equation by Fm"r#\ and using the
orthogonality condition\

gV

Fn"r#Fm"r# dV � 6
9 when n � m

Nn when n � m
"03#

yields\ in an ordinary di}erential equation\ the relation

d1cn"t#

dt1
−1bn

dcn"t#
dt

¦l1
ncn"t# � S�n"t#[ "04#

The symbols bn\ ln\ and S�n"t# are short!hand notations
de_ned by the relations\

bn � gn $0−
0
1

tt

tq¦te

−
0

1gn"tq¦te#% "05a#

ln � gn $0−
tt

tq¦te%
0:1

"05b#

S�n"t# �
egnt

NnC"tq¦te# gV

Fn"r# 0S"r\ t#¦tq

1S"r\ t#
1t 1 dV[

"05c#

It is remarkable that\ except for coe.cients bn and ln\
this solution of equation "04# is identical to that presented
by Haji!Sheikh and Beck ð7Ł for the thermal wave equa!
tion[ Modi_cations are needed to account for the con!
tribution of the terms in square brackets\ equation "05a#\
and for the term tt:"tq¦te# in equation "05b#[ The solu!
tion ð7Ł of equation "04# leads to the value of the function
c as

cn"t# � ebnt"D0n sinhðz"b1
n−l1

n #tŁ

¦D1n coshðz"b1
n−l1

n #tŁ#

¦g
t

t�9

ebn"t−t# sinhðz"b1
n−l1

n #"t−t#Ł

z"b1
n−l1

n #
S�n"t# dt[ "06#

The arguments of hyperbolic sine and cosines are real if
b1

n−l1
n × 9^ otherwise\ they are imaginary^ however\ the

quantity cn"t# is always real[ The constants of integration
are D0n and D1n that must be determined using the initial
temperature Ti"r# � T"r\ 9# and Tii"r# � 1T"r\ t#:1t as t :
9[ The substitution of cn"t# from equation "06# in equa!
tion "01# provides the complete solution for the homo!
geneous boundary conditions[ The contribution of the
initial condition is

TI "r\ t# � s
�

n�0

Fn"r#
Nn

e−"gn−bn#t 6
sinhðz"b1

n−l1
n #tŁ

z"b1
n−l1

n #

×$"gn−bn# gV

Fn"r#Ti"r# dV?¦gV

Fn"r#Tii"r# dV?%
¦coshðz"b1

n−l1
n #tŁ gV

Fn"r#Ti"r# dV?7 "07a#

and the contribution of the volumetric heat source is

TS"r\ t# � s
�

n�0 g
t

t�9 gV 0
Fn"r#Fn"r?#

CNn 1 e−gn"t−t#

×6
ebn"t−t# sinhðz"b1

n−l1
n #"t−t#Ł

"tq¦te#z"b1
n−l1

n # 7
×0S"r?\ t#¦tq

1S"r?\ t#
1t 1 dV? dt[ "07b#

Then\ the general solution for homogeneous boundary
conditions is

T"r\ t# � TI "r\ t#¦TS"r\ t#[ "07c#

The detailed procedure that includes the contribution of
nonhomogeneous boundary conditions is in ð7Ł[ Also\
this reference contains a method of calculating the
Green|s function from equation "07b# that is employed
in the subsequent analysis[

If S"r?\ t# in equation "07b# is replaced by
Cd"t−t�#d"r?−r�# and after some algebraic steps
described in ð7Ł\ the result is the Green|s function

GM"r\ t = r?\ t# � GM
a "r\ t = r?\ t#
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¦
tq

te¦tq

ðGM
b "r\ t = r?\ t#−GM

c "r\ t = r?\ t#Ł "08a#

where

GM
a "r\ t = r?\ t# � s

�

n�0 0
Fn"r#Fn"r?#

Nn 1 e−gn"t−t#

×6
ebn"t−t# sinhðz"b1

n−l1
n #"t−t#Ł

"tq¦te#z"b1
n−l1

n # 7 "08b#

and

GM
b "r\ t = r?\ t# � s

�

n�0 0
Fn"r#Fn"r?#

Nn 1 e−gn"t−t#

×"ebn"t−t# coshðz"b1
n−l1

n #"t−t#Ł# "08c#

GM
c "r\ t = r?\ t# � s

�

n�0 0
Fn"r#Fn"r?#

Nn 1 e−gn"t−t#

×6"gn−bn#
ebn"t−t# sinhðz"b1

n−l1
n #"t−t#Ł

z"b1
n−l1

n # 7 [ "08d#

For dielectric materials\ G : � then te � 9 and
tq"gn−bn# � 0:1 and equation "08a# reduces to

GM"r\ t = r?\ t# �"0:1#GM
a "r\ t = r?\ t#¦GM

b "r\ t = r?\ t#

wherein GM"=#\ "0:1#GM
a "=#\ and GM

b "=# correspond to
Gw"=#\ Gwa"=# and Gwb"=# de_ned in ref[ ð7Ł[ The complete
Green|s function solution form of equation "07a#\ descri!
bing the e}ects of initial conditions\ is

TI "r\ t# � gV

GM
c "r\ t = r?\ t#Ti"r?# dV?

¦"tq¦te# gV

GM
a "r\ t = r?\ t#Tii"r?# dV?

¦gV

GM
b "r\ t = r?\ t#Ti"r?# dV? "19a#

and equation "07b# for the volumetric heat source e}ect
is

TS"r\ t# �
0
C g

t

t�9

dt gV

GM
a "r\ t = r?\ t#

×0S"r?\ t#¦tq

1S"r?\ t#
1t 1 dV?[ "19b#

Equation "19b# is the basic solution for most laser heating
problems in microscale applications[ Accordingly\ the
temperature solutions for many microscale systems are
readily available by minor modi_cation of the Green|s
functions and Green|s function solutions for Fourier heat
conduction[ In the following numerical examples\ this
solution method is tested through computation of the
temperature response due to a sinusoidal heat input[ This
type of response is of interest in signal processing[ The
contribution of the nonhomogeneous boundary con!

ditions can be included using a linear transformation of
temperature as described in ð7Ł[

2[ Numerical examples

2[0[ Example 0[ Thermal wave model

The following analysis applies to a thin _lm of a dielec!
tric material modeled as a plate\ Fig[ 0\ whose surfaces at
x � 9 and x � L are insulated\ and the material domain
is initially at zero temperature[ For dielectric materials\
tt � 9\ subsequently te � 9\ and tq � a:s1 where a is ther!
mal di}usivity and s is the speed of the thermal wave ð8\
09Ł[

2[1[ Solution

A solution for a similar problem with a narrower range
of frequency parameters is in ð00Ł[ For homogeneous
boundary conditions and zero initial condition\ equation
"07b# reduces to the temperature solution\

T"x\ t# �
a

K g
t

t�9

dt g
L

9

GM
a "x\ t = x?\ t#

×$S"x?\ t#¦
a

s1

1S"x?\ t#
1t % dx? "10a#

The Green|s function for this example is

GM
a "x\ t = x?\ t# � 1 s

�

m�9

1−d9m

L
cos 0

mpx
L 1

×cos 0
mpx?

L 1 e−s1"t−t#:1a
sinðs1l¹m"t−t#:1aŁ

l¹m

"10b#

where l¹m � z3m1p1:Sp1−0 and Sp � sL:a is the
dimensionless speed number[ For this speci_c example\
it is assumed the heat source is at x � 9 and it is described
by the relation S"x\ t# � d"x−9#q"t# wherein the Dirac
Delta function\ d"x−9# � 9 when x � 9[ After sub!
stituting for S"x?\ t# and GM

a "x\ t = x?\ t# in equation "10b#
and following integration of the term containing

Fig[ 0[ Schematic of a thin plate and boundary conditions[
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1S"x?\ t#:1t by parts while assuming q"9# � 9\ equation
"10a# reduces to

T �
a

Ks
e−sj:1aq"t−j:s#

¦
a

K
s
�

m�9

1−d9m

L
cos 0

mpx
L 1

×g
t

t�9

e−s1"t−t#:1a
sinðs1l¹m"t−t#:1aŁ

l¹m

q"t# dt

¦
a

K
s
�

m�9

1−d9m

L
cos 0

mpx
L 1 g

t

t�9

e−s1"t−t#:1a

×"cosðs1l¹m"t−t#:1aŁ−cosðmps"t−t#:LŁ#q"t# dt

"11#

where d9m is the Kronecker delta\ d9m � 0 if m � 9\ other!
wise d9m � 9[ The _rst term on the right side of equation
"11# describes the propagating thermal wave and contains
a parameter\ j\ the distance that the wave travels\ includ!
ing boundary re~ections[ For thermal waves\ re~ections
must be considered although the wave attenuates very
quickly[ The term containing j is obtained by integrating
over the term with 1S"x?\ t#:1t in equation "19b#[ The
unique feature of this solution is that the convergence of
the last term in equation "11# is greatly enhanced because
the term in square brackets goes to zero as m : �[

The following parametric studies show the in~uence of
a periodic surface heat ~ux on the amplitude and phase
delay of the resulting temperature variation[ For this
initial parametric study\ assume the surface heat ~ux is
given as

q"t# � q9 sin"nt# "12#

where n is the angular frequency equal to 1p×frequency
and q is the heat ~ux with q9 its amplitude[ The dimen!
sionless temperatures on both surfaces of the thin _lm
are computed using equation "11#[ For comparison\ the
temperature is also calculated using the solution of the
microscale conduction equation\ e[g[\ equation "19b#\ see
equation "A0# in appendix[ An examination of the
numerical results obtained from equation "11# and veri!
_ed using equation "A0# shows that the former provides a
better insight into the wave phenomena and has superior
convergence characteristics[ Figures 1Ð4 show the com!
puted phase angle and dimensionless frequency using
equation "11#[

2[2[ Results

To elucidate this presentation\ an abstract thin _lm is
chosen so that the value of the speed number\ Sp � sL:a\
is equal to _ve[ Figure 1 is plotted for a dimensionless
nL1:a equal to 09[ The temperature amplitude at x � L\
for the thermal wave\ equation "11#\ is the solid line
in Fig[ 1"b#[ It is slightly higher than the amplitude of

Fig[ 1[ Heat ~ux input at x � 9 and temperature for thermal
wave and Fourier conduction models when nL1:a � 09 and
sL:a � 4^ "a# at x � 9 and "b# at x � L[

Fig[ 2[ Heat ~ux input at x � 9 and temperature for thermal
wave and Fourier conduction models when nL1:a � 39 and
sL:a � 4^ "a# � 9 and "b# at x � L[

temperature values\ dash line\ for the Fourier conduction
and there is only a moderate change in the phase shift[
In Fig[ 1"a#\ at x � 9\ the graph shows that there is very
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Fig[ 3[ Heat ~ux input at x � 9 and temperature for thermal
wave and Fourier conduction models when nL1:a � 59 and
sL:a � 4^ "a# at x � 9 and "b# at x � L[

Fig[ 4[ Summary of "a# phase angle\ "b# amplitude at x � L
di}erent values of the Sp � sL:a[

little di}erence in the surface temperature using these two
models[

Equation "11# shows that an increase in the frequency
reduces the temperature amplitude at x � L^ however\ it

will approach an asymptotic value[ In contrast\ in the
Fourier conduction solution\ the amplitude continuously
reduces[ These observations are graphically demon!
strated\ for nL1:a � 39 and 59\ in Figs 2 and 3\ re!
spectively[ As nL1:a increases from 09 to 39\ Fig[ 2"b#\
the amplitude of temperature at x � L\ for the thermal
wave model\ is reduced by a factor of ½3 and for the
Fourier conduction model is reduced by a factor of nearly
02[ Also\ there is a signi_cant increase in the phase shift
for the thermal wave model at x � L[ Figure 2"a# shows
the temperature data at the x � 9 surface[ As nL1:a fur!
ther increases\ Fig[ 3"b#\ clearly shows the e}ect of the
thermal wave[ There is only a moderate reduction of the
temperature amplitude at x � L for the thermal wave
model while the phase delay spans over two periods[ The
data in Figs 2"b# and 3"b# show that there is an o}set in
the value of the mean temperature[ For example\ for the
Fourier conduction and as t : �\ the value of this o}set
for dimensionless temperature\ KT:q9L\ is equal to
0:"nL1:a#[

To summarize the data\ the value of the phase angle is
plotted in Fig[ 4"a# as a function of nL1:a for di}erent
values of the speed number\ Sp � sL:a[ The ordinate in
Fig[ 4"a# is f:1p where f is the phase angle[ The ordinate
is also equal to the ratio of the time delay of the signal to
the period of the signal\ Dt:to � f:1p[ In this _gure\ the
sL:a � � line represents the phase angle for the Fourier
conduction model[ The phase angle\ f\ at the x � L
surface\ for the thermal wave model is signi_cantly larger
than that for the Fourier heat conduction when Sp � 4\
Fig[ 4"a#[ This di}erence gradually diminishes as Sp
increases to above 09[ For Sp of below _ve\ the thermal
wave dominates and the _rst term on the right!hand!
side of equation "11# plus an o}set of ½9[14 adequately
predicts the phase angle\ f ¼ 9[14¦nx:s\ see the dash
lines in Fig[ 4"a#[ The line for Sp � 3 shows a wavy
behavior[ This is unrelated to the series convergence since
the {×| symbols are computed symbolically using 099
terms and the solid lines are generated by Fortran using
equation "11# and retaining as many as 39 999 terms[
With no signi_cant observed di}erence in the two cal!
culated values\ the wavy behavior is not due to numerical
error[ The corresponding amplitudes at the x � L surface
are plotted in Fig[ 4"b#[ All amplitudes in Fig[ 4"b#
asymptotically approach 0:"nL1:a# when nL1:a is less than
one\ see the dash line in Fig[ 4"b#[ However\ at large
values of nL1:a "not shown in the _gure#\ the amplitude is
higher for small Sp values and approaches the asymptotic
value of exp"−Sp:1#:Sp[

2[3[ Example 1[ Parametric studies of parabolic two!step
model

The response of a thin metallic _lm to a periodic sur!
face heat ~ux is considered[ The computation of ampli!
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tude and phase angle of a periodic surface heat ~ux is the
subject of this example[

2[4[ Solution

The response of a thin gold _lm to irradiation by a
Gaussian!shaped light pulse has been examined ana!
lytically in ð01Ł for the parabolic two!step model[ The
parabolic two!step model follows from the more general
hyperbolic two!step equation by the elimination of
tq � tF\ assuming that it is small and it can be neglected[
In the presence of a heat source\ the generalized for!
mulation for homogeneous boundary conditions and
zero initial conditions\ equation "07b#\ leads to a tem!
perature solution for the parabolic two!step radiation
heating model

Tl �
G

CeCl

s
�

m�9

1−d9m

L

×cos 0
mpx
L 1 g

t

t�9

e−"gm−bm#"t−t#

×
sinhðzb1

m−g1
m"0−Cl:Ce#"t−t#Ł

zb1
m−g1

m"0−Cl:Ce#
dt

×g
L

9

cos 0
mpx
L 1S"x\ t# dx "13#

where gm �"mp:L#1K:C and bm � gmð0−C:"1Ce#Ł−
GC:"1CeCl#[ Recall that the electrons initially absorb the
energy\ move through the lattice and transfer their energy
to the lattice[ Furthermore\ equation "A0# in the appen!
dix yields the integrated form of equation "13# after
appropriate substitutions for te\ tt\ and letting tq : 9[

2[5[ Results

Calculations of the phase angle presented here are for
a typical range of signi_cant parameter values[ Of the
signi_cant parameters\ only the ratio of electron and total
heat capacities is solely determined by the material under
consideration[ The total heat capacity and the electron
heat capacities are calculated by the method described
in ð5Ł[ Care is taken that the CÞ � Ce:C values in the
calculations are typical for most metals[ The values of CÞ\
for data in Table 0\ vary from 9[9964 for silver to 9[921
for lead[ When necessary\ the in_nite series\ in equation
"13# is truncated at M � 4999\ where M is the number of
terms in the series[ Generally\ M � 499 terms resulted in
four accurate signi_cant _gures[

The signi_cant parameters that determine the phase
response of the _lm to sinusoidal heat input are the
dimensionless electron!phonon coupling factor\
GÞ � GL1:K\ the ratio of electron to total heat capacities\

CÞ � Ce:C\ and the Fourier dimensionless frequency\
nCL1:K[ However\ other relevant dimensionless fre!
quencies emerge for the two!step e}ect depending on the
value of GÞ[

The phase angle results for GÞ between 09 and 499\
shown in Fig[ 5"a#\ follow a general trend[ For a range
of dimensionless frequency values\ the phase angle\ at
low values\ is on the Fourier reference curve but smaller
at larger values of frequency[ When GÞ is very large\ the
phase angle for the two!step model has nearly the same
value as the Fourier conduction model and it is nearly
independent of CÞ[ As GÞ decreases\ the phase angle further
departs from the expected Fourier phase angle and the
dependence of the phase angle on CÞ becomes detectable[
Figure 5"b# shows the dimensionless amplitude at x � L
caused by the periodic surface heat ~ux[ The amplitude
is nearly the same as that for the Fourier conduction
model and the logarithmic scale is for clarity of pres!
entation[ The results for GÞ of about _ve or less are plotted
in Figs 6"aÐb#[ The phase angle\ f\ in Fig[ 6"a#\ shows a
stronger dependence on CÞ and the dimensionless tem!
perature amplitude\ Fig[ 6"b#\ assumes higher values than
those of the Fourier conduction model[ Note that\ in Fig[
6"a#\ the phase angle can be less for GÞ � 4 than for GÞ � 0[
This behavior occurs when electrons transport a larger
portion of energy across the layer in comparison to
molecular communications due to the Fourier conduc!
tion[ Indeed\ a linear variation suggested modi_cation of
dimensionless frequency in Figs 5 and 6 when GÞ is small[

An examination of equation "13# shows that\ in

Fig[ 5[ The variation of "a# the phase angle\ f\ and "b# the
dimensionless amplitude with dimensionless frequency\ nCL1:K\
for GL1:K between 09 and 499 and CÞ between 9[994 and 9[94[
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Fig[ 6[ The variation of "a# the phase angle\ f\ and "b# the
dimensionless amplitude with dimensionless frequency\ nCL1:K\
for GL1:K between one and ten and CÞ between 9[994 and 9[94[

addition to coordinates and time\ the temperature and
phase angle depend on GÞ\ CÞ\ and nCL1:K[ It is of practical
interest to study the range of variables when the number
of these parameters is reduced[ As an example\ when
GÞ is very small\ Elsayed!Ali et al[ ð02Ł suggests setting
9 = q� 9[ After deleting 9 = q in equation "2a# and
eliminating Te using equation "1#\ the resulting di}er!
ential equation has a form similar to equation "04#\ that
is\

d1Tl

d"t:te#1
¦

dTl

d"t:te#
� teS:C "14a#

whose solution is

Tl �
tt

C $g
t:tt

9

S"t# dt−e−t:tt g
t:tt

9

etS"t# dt% "14b#

where the dummy variable of integration\ t\ is dimen!
sionless[ When S � q9 sin"nt#\ the computation of the
phase angle\ using equation "14b#\ leads to sin"f# �"nte#:
ð0¦"nt?e#1Ł and cos"f# � −"nte#1:ð0¦"nte#1Ł[ The solid
line in Fig[ 7 shows the variation of the phase angle\
f � tan−0"−0:nte#\ as a function of nte � nCeCl:"CG#[
The discrete data in the _gure are computed using equa!
tion "13#[ For GÞ � 9[94\ the deviations from the solid line\
at nte � 4\ is only 0[2)\ whereas\ for nte � 4 increases to
4[2)\ and the error is much lower for smaller GÞ values[
This good agreement indicates that\ for GÞ ³ 9[94\ there
are negligible thermal gradients in the lattice and the
electron gas[ In general\ when nte � 1p or less\ the period

Fig[ 7[ The region of GL1:K ³ 9[94 when the energy transport
across a thin metal plate is by electrons[

is of the order of electron relaxation time and the solid
line in Fig[ 7 is a good approximation[ This regime\ where
the thermal conduction is negligible\ is analogous to a
lumped system in Newtonian heating where t:te is related
to GÞ Fo �"GL1:K#"Kt:CeL

1# that plays the role of Biot
number×Fourier number[ When GÞ × 9[94\ Fig[ 7\ the
deviation from the solid line increases^ however\ the
results remain insensitive to CÞ[ To demonstrate the con!
tribution of GÞ\ Fig[ 8 is prepared by extracting GÞ from
the dimensionless frequency used in Fig[ 7[ Figure 8
shows that the phase angle\ for values of 9[94 U GÞ U 4\
depends on nCeClL

1:"KC# and GÞ but remains independent
of CÞ until GÞ � 4 and CÞ � 9[94[ The phase angle response
for this dimensionless frequency is further explored in
ref[ ð03Ł[

3[ Conclusion and remarks

Thin _lms and short heat ~ux times o}er special chal!
lenges for modeling thermal behavior[ Below some
maximum length and time interval\ the Fourier heat con!
duction no longer serves as an accurate description of
temperature and heat ~ow _elds[ It is remarkable that
there is a uni_ed solution for metallic\ nonmetallic\ and
various other substances[ This type of solution is math!
ematically simple to obtain because it uses Fourier con!
duction eigenfunctions and many of these eigenfunctions
are available in the literature ð04Ł[ Except for the term in
the curly brackets\ equation "08a# or "08b# is the Green|s
function that is valid for homogeneous materials[ The
two cases studied show a di}erence in the nature of phase
angles\ the thermal wave model shows higher phase
angles while the two!step model shows lower phase angles
than the Fourier conduction model[ A thermal wave may
exist in dielectric material[ However\ in the case of the
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Fig[ 8[ The variation of the phase angle\ f\ with dimensionless
frequency\ nCeClL

1:"KC#\ for GL1:K between 9[0 and 4 and CÞ
between 9[990 and 9[94[

parabolic two!step model\ since Cl × Ce and tq 3 9\ the
argument of the hyperbolic sine in equation "13# is posi!
tive^ hence\ there is no thermal wave in a metallic _lm[

As discussed earlier\ the phase delay in a dielectric
material depends on nCL1:K and Sp[ When Sp ³ 19\
there will be a detectable increase in phase shift due to
the _nite thermal wave speed and\ when Sp ³ 09\ this
contribution is signi_cantly larger[ In principle\ the phase
angle can be detected in nonmetallic substances of small
thickness with relatively small values sL:a[

The phase angle results of the numerical simulation\
Figs 5Ð8\ indicate the interesting mechanisms of heat
conduction[ For Fourier heat conduction\ the lattice and
electron temperature remain in local equilibrium[ Fourier
heat conduction would be expected as G "or GÞ#
approaches in_nity[ For large values of GÞ\ Fig[ 5\ the
phase angle response is essentially Fourier and inde!
pendent of CÞ and GÞ[ As GÞ reduces to 09\ the variable GÞ
begins to greatly in~uence the phase angle\ however\ the
in~uence of CÞ remains relatively small[ The e}ect of CÞ
becomes signi_cant\ Fig[ 6\ when GÞ approaches one and
the e}ect of the Fourier conduction begins to diminish[
For GÞ below 9[94\ Fig[ 7\ the contribution of the Fourier
conduction diminishes and the phase angle depends on a
single parameter[ In this regime\ the heat transfer can be
considered wholly two!step with the transfer of energy
being from electrons to lattice in the non!equilibrium
state for all the frequencies investigated[ Figure 8
describes a transition regime where the in~uence of the
thermal conduction is small but graphically detectable[

The phase angles apparently have a minimum limit at
9[14\ or a 89> phase di}erence for the two!step parabolic\
Fourier\ and thermal wave models[ For the thermal wave
model and Fourier model\ this minimum is seen only
at the lowest frequencies[ The minimum phase angle is

approached at higher frequencies for some combinations
of GÞ and CÞ in the two!step model results[

Based on the results of numerical simulations\ exper!
imental determination of GÞ and CÞ could be accomplished
using this model[ Presently\ single frequency modulation
of laser irradiance is di.cult to accomplish^ the multiple
frequency input is the most feasible[ Metal _lms varying
in thickness could be tested and the phase angles com!
pared to results of the two!step model shown here[ The
multiple frequency input could be analyzed for phase
information and compared with the phase information
of the resulting temperature variation[

3[0[ Wave phenomenon in the solution

Depending on the values of tq and tt\ the temperature
described by equation "07c# can exhibit wave behavior[
For example\ when tt � 9 and tq × 9\ the arguments of
hyperbolic sine and cosine can become imaginary indi!
cating existence of a wave phenomenon^ in contrast\ there
is no wave if tq � 9 and tt × 9[ The existence of a wave
phenomenon\ b1

n−l1
n ³ 9\ leads to a condition

0
tq¦te

tt 1"gntt# ×
0
3

ð0¦"gntt#Ł1[ "15#

The right!hand!side and the left!hand!side of inequality
"15# are plotted as a function of their common variable\
gntt\ in Fig[ 09[ The right!hand!side of inequality "15#
describes a parabola shown in Fig[ 09 while the left!hand!
side represents a family of lines passing through the origin
with a slope equal to m �"tq¦te#:tt[ A line through the
origin with slope of 0 is tangent to the solid line in Fig[
09 indicating that there is no thermal wave when
m �"tq¦te#:tt ³ 0^ e[g[\ for metals\ m 3 Ce:C ð 0[ In con!
trast\ for dielectric materials\ tt : 9 and m : �\ and the
inequality "15# leads to tqgn × 0:3\ a condition for occur!
rence of the thermal wave[

Fig[ 09[ Graphical representation of thermal wave condition in
microscale heat conduction[
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Appendix

Examples 0 and 1 describe the behavior of dielectric
materials and pure metals when there is a periodic heat
input at one surface[ The temperature solution of
equation "07b#\ retaining tq\ tt\ and te\ and de_ning the
parameters am � gm−bm\ gm �"mp:L#1K:C\ and
vm �"b1

m−l1
m#0:1 is

KT
q9L

� s
�

m�9

"1−d9m# cos"mpx:L#
vn"te¦tq

×""L0¦ntqL1# expð−amKt:"CL1#Ł

¦"Gs0¦ntqGs1# sin"nt#¦"Gc0¦ntqGc1# cos"nt##:

ðn3¦"a1
m−v1

m# 1¦1n1"a1
m¦v1

n #Ł "A0#

where

L0 � nð1amvm cosh"vmt#¦"n1¦a1
m¦v1

m# sinh"vmt#Ł

"A1#

L0 � ðvm"n1−a1
m¦v1

m# cosh"vmt#

−"n1¦a1
m−v1

m# sinh"vmt#Ł "A2#

Gs0 � Gc1 � −vm"n1−a1
m¦v1

m#

and Gc0 � −Gs1 � −1namvm[ "A3#

The periodic terms in equation "A0# can be cast in the
form sin"nt−f# where f is the phase angle[
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